Mutational Meltdown in Primary Endosymbionts: Selection Limits Muller's Ratchet

نویسندگان

  • Julie M. Allen
  • Jessica E. Light
  • M. Alejandra Perotti
  • Henk R. Braig
  • David L. Reed
چکیده

BACKGROUND Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Muller's ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Muller's ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Muller's ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. METHODOLOGY/PRINCIPAL FINDINGS To determine whether selection is slowing the effects of Muller's ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13-25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19-34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. CONCLUSIONS/SIGNIFICANCE A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Muller's ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated evolution and Muller's rachet in endosymbiotic bacteria.

Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i)...

متن کامل

Temporal variation in selection accelerates mutational decay by Muller's ratchet.

Asexual species accumulate deleterious mutations through an irreversible process known as Muller's ratchet. Attempts to quantify the rate of the ratchet have ignored the role of temporal environmental heterogeneity even though it is common in nature and has the potential to affect overall ratchet rate. Here we examine Muller's ratchet in the context of conditional neutrality (i.e., mutations th...

متن کامل

Rare beneficial mutations can halt Muller's ratchet

The vast majority of mutations are deleterious, and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller’s ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller’s ratchet turns into a mu...

متن کامل

Muller's ratchet and the degeneration of the Drosophila miranda neo-Y chromosome.

Since its formation about 1.75 million years ago, the Drosophila miranda neo-Y chromosome has undergone a rapid process of degeneration, having lost approximately half of the genes that it originally contained. Using estimates of mutation rates and selection coefficients for loss-of-function mutations, we show that the high rate of accumulation of these mutations can largely be explained by Mul...

متن کامل

Mutational interference and the progression of Muller's ratchet when mutations have a broad range of deleterious effects.

Deleterious mutations can accumulate in asexual haploid genomes through the process known as Muller's ratchet. This process has been described in the literature mostly for the case where all mutations are assumed to have the same effect on fitness. In the more realistic situation, deleterious mutations will affect fitness with a wide range of effects, from almost neutral to lethal. To elucidate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009